Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.205
Filtrar
1.
Sci Rep ; 14(1): 7759, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565594

RESUMO

The vertebrate stress response (SR) is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and contributes to generating context appropriate physiological and behavioral changes. Although the HPA axis plays vital roles both in stressful and basal conditions, research has focused on the response under stress. To understand broader roles of the HPA axis in a changing environment, we characterized an adaptive behavior of larval zebrafish during ambient illumination changes. Genetic abrogation of glucocorticoid receptor (nr3c1) decreased basal locomotor activity in light and darkness. Some key HPI axis receptors (mc2r [ACTH receptor], nr3c1), but not nr3c2 (mineralocorticoid receptor), were required to adapt to light more efficiently but became dispensable when longer illumination was provided. Such light adaptation was more efficient in dimmer light. Our findings show that the HPI axis contributes to the SR, facilitating the phasic response and maintaining an adapted basal state, and that certain adaptations occur without HPI axis activity.


Assuntos
Sistema Hipotálamo-Hipofisário , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Larva/genética , Larva/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Adaptação Psicológica
2.
BMC Psychiatry ; 24(1): 269, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600448

RESUMO

OBJECTIVE: The purpose of this study was to investigate the effects of escitalopram on the peripheral expression of hypothalamic-pituitary-adrenal (HPA) axis-related genes (FKBP51, HSP90, NR3C1 and POMC) and HPA-axis hormones in patients with panic disorder (PD). METHODS: Seventy-seven patients with PD were treated with escitalopram for 12 weeks. All participants were assessed for the severity of panic symptoms using the Panic Disorder Severity Scale (PDSS). The expression of HPA-axis genes was measured using real-time quantitative fluorescent PCR, and ACTH and cortisol levels were measured using chemiluminescence at baseline and after 12 weeks of treatment. RESULTS: At baseline, patients with PD had elevated levels of ACTH and cortisol, and FKBP51 expression in comparison to healthy controls (all p < 0.01). Correlation analysis revealed that FKBP51 expression levels were significantly positively related to cortisol levels and the severity of PD (all p < 0.01). Furthermore, baseline ACTH and cortisol levels, and FKBP51 expression levels were significantly reduced after 12 weeks of treatment, and the change in the PDSS score from baseline to post-treatment was significantly and positively related to the change in cortisol (p < 0.01). CONCLUSIONS: The results suggest that PD may be associated with elevated levels of ACTH and cortisol, and FKBP51 expression, and that all three biomarkers are substantially decreased in patients who have received escitalopram treatment.


Assuntos
Transtorno de Pânico , Humanos , Transtorno de Pânico/tratamento farmacológico , Transtorno de Pânico/genética , Transtorno de Pânico/diagnóstico , Hormônio Adrenocorticotrópico/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Hidrocortisona/metabolismo , Escitalopram , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , RNA Mensageiro
3.
PLoS One ; 19(4): e0298553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568926

RESUMO

The pervasive use of social media has raised concerns about its potential detrimental effects on physical and mental health. Others have demonstrated a relationship between social media use and anxiety, depression, and psychosocial stress. In light of these studies, we examined physiological indicators of stress (heart rate to measure autonomic nervous system activation and cortisol to assess activity of the hypothalamic-pituitary-adrenal axis) associated with social media use and investigated possible moderating influences of sex, age, and psychological parameters. We collected physiological data from 59 subjects ranging in age from 13 to 55 across two cell phone treatments: social media use and a pre-selected YouTube playlist. Heart rate was measured using arm-band heart rate monitors before and during cell phone treatments, and saliva was collected for later cortisol analysis (by enzyme immunoassay) before and after each of the two cell phone treatments. To disentangle the effects of cell phone treatment from order of treatment, we used a crossover design in which participants were randomized to treatment order. Our study uncovered a significant period effect suggesting that both heart rate and cortisol decreased over the duration of our experiment, irrespective of the type of cell phone activity or the order of treatments. There was no indication that age, sex, habits of social media use, or psychometric parameters moderated the physiological response to cell phone activities. Our data suggest that 20-minute bouts of social media use or YouTube viewing do not elicit a physiological stress response.


Assuntos
Uso do Telefone Celular , Mídias Sociais , Humanos , Frequência Cardíaca/fisiologia , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Saliva/metabolismo , Estresse Fisiológico , Estresse Psicológico/psicologia , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
4.
Front Endocrinol (Lausanne) ; 15: 1282564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638132

RESUMO

Objective: We compared hair cortisol (HC) with classic tests of the hypothalamic-pituitary-adrenal (HPA) axis in chronic kidney disease (CKD) and assessed its association with kidney and cardiometabolic status. Design and methods: A cross-sectional study of 48 patients with CKD stages I-IV, matched by age, sex, and BMI with 24 healthy controls (CTR) was performed. Metabolic comorbidities, body composition, and HPA axis function were studied. Results: A total of 72 subjects (age 52.9 ± 12.2 years, 50% women, BMI 26.2 ± 4.1 kg/m2) were included. Metabolic syndrome features (hypertension, dyslipidaemia, glucose, HOMA-IR, triglycerides, waist circumference) and 24-h urinary proteins increased progressively with worsening kidney function (p < 0.05 for all). Reduced cortisol suppression after 1-mg dexamethasone suppression (DST) (p < 0.001), a higher noon (12:00 h pm) salivary cortisol (p = 0.042), and salivary cortisol AUC (p = 0.008) were seen in CKD. 24-h urinary-free cortisol (24-h UFC) decreased in CKD stages III-IV compared with I-II (p < 0.001); higher midnight salivary cortisol (p = 0.015) and lower suppressibility after 1-mg DST were observed with declining kidney function (p < 0.001). Cortisol-after-DST cortisol was >2 mcg/dL in 23% of CKD patients (12.5% in stage III and 56.3% in stage IV); 45% of them had cortisol >2 mcg/dL after low-dose 2-day DST, all in stage IV (p < 0.001 for all). Cortisol-after-DST was lineally inversely correlated with eGFR (p < 0.001). Cortisol-after-DST (OR 14.9, 95% CI 1.7-103, p = 0.015) and glucose (OR 1.3, 95% CI 1.1-1.5, p = 0.003) were independently associated with eGFR <30 mL/min/m2). HC was independently correlated with visceral adipose tissue (VAT) (p = 0.016). Cortisol-after-DST (p = 0.032) and VAT (p < 0.001) were independently correlated with BMI. Conclusion: Cortisol-after-DST and salivary cortisol rhythm present progressive alterations in CKD patients. Changes in cortisol excretion and HPA dynamics in CKD are not accompanied by significant changes in long-term exposure to cortisol evaluated by HC. The clinical significance and pathophysiological mechanisms explaining the associations between HPA parameters, body composition, and kidney damage warrant further study.


Assuntos
Hidrocortisona , Insuficiência Renal Crônica , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Estudos Transversais , Sistema Hipófise-Suprarrenal/metabolismo , Glucose
5.
Front Endocrinol (Lausanne) ; 15: 1373748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660512

RESUMO

Chronic fatigue syndrome (CFS) causes great harm to individuals and society. Elucidating the pathogenesis of CFS and developing safe and effective treatments are urgently needed. This paper reviews the functional changes in the hypothalamus-pituitary-adrenal (HPA) axis in patients with CFS and the associated neuroendocrine mechanisms. Despite some controversy, the current mainstream research evidence indicates that CFS patients have mild hypocortisolism, weakened daily variation in cortisol, a weakened response to the HPA axis, and an increase in negative feedback of the HPA axis. The relationship between dysfunction of the HPA axis and the typical symptoms of CFS are discussed, and the current treatment methods are reviewed.


Assuntos
Síndrome de Fadiga Crônica , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Humanos , Síndrome de Fadiga Crônica/terapia , Síndrome de Fadiga Crônica/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Hidrocortisona/metabolismo
6.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473937

RESUMO

Prenatal alcohol exposure (PAE) and prenatal stress (PS) are highly prevalent conditions known to affect fetal programming of the hypothalamic-pituitary-adrenal (HPA) axis. The objectives of this study were to assess the effect of light PAE, PS, and PAE-PS interaction on fetal HPA axis activity assessed via placental and umbilical cord blood biomarkers. Participants of the ENRICH-2 cohort were recruited during the second trimester and classified into the PAE and unexposed control groups. PS was assessed by the Perceived Stress Scale. Placental tissue was collected promptly after delivery; gene and protein analysis for 11ß-HSD1, 11ß-HSD2, and pCRH were conducted by qPCR and ELISA, respectively. Umbilical cord blood was analyzed for cortisone and cortisol. Pearson correlation and multivariable linear regression examined the association of PAE and PS with HPA axis biomarkers. Mean alcohol consumption in the PAE group was ~2 drinks/week. Higher PS was observed in the PAE group (p < 0.01). In multivariable modeling, PS was associated with pCRH gene expression (ß = 0.006, p < 0.01), while PAE was associated with 11ß-HSD2 protein expression (ß = 0.56, p < 0.01). A significant alcohol-by-stress interaction was observed with respect to 11ß-HSD2 protein expression (p < 0.01). Results indicate that PAE and PS may independently and in combination affect fetal programming of the HPA axis.


Assuntos
Doenças Fetais , Efeitos Tardios da Exposição Pré-Natal , Testes Psicológicos , Autorrelato , Humanos , Gravidez , Feminino , Placenta/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Estresse Psicológico/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Desenvolvimento Fetal , Biomarcadores/metabolismo
7.
Psychoneuroendocrinology ; 164: 107023, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522372

RESUMO

BACKGROUND: Hundreds of millions of children in low- and middle-income countries are exposed to chronic stressors, such as poverty, poor sanitation and hygiene, and sub-optimal nutrition. These stressors can have physiological consequences for children and may ultimately have detrimental effects on child development. This study explores associations between biological measures of chronic stress in early life and developmental outcomes in a large cohort of young children living in rural Bangladesh. METHODS: We assessed physiologic measures of stress in the first two years of life using measures of the hypothalamic-pituitary-adrenal (HPA) axis (salivary cortisol and glucocorticoid receptor gene methylation), the sympathetic-adrenal-medullary (SAM) system (salivary alpha-amylase, heart rate, and blood pressure), and oxidative status (F2-isoprostanes). We assessed child development in the first two years of life with the MacArthur-Bates Communicative Development Inventories (CDI), the WHO gross motor milestones, and the Extended Ages and Stages Questionnaire (EASQ). We compared development outcomes of children at the 75th and 25th percentiles of stress biomarker distributions while adjusting for potential confounders using generalized additive models, which are statistical models where the outcome is predicted by a potentially non-linear function of predictor variables. RESULTS: We analyzed data from 684 children (49% female) at both 14 and 28 months of age; we included an additional 765 children at 28 months of age. We detected a significant relationship between HPA axis activity and child development, where increased HPA axis activity was associated with poor development outcomes. Specifically, we found that cortisol reactivity (coefficient -0.15, 95% CI (-0.29, -0.01)) and post-stressor levels (coefficient -0.12, 95% CI (-0.24, -0.01)) were associated with CDI comprehension score, post-stressor cortisol was associated with combined EASQ score (coefficient -0.22, 95% CI (-0.41, -0.04), and overall glucocorticoid receptor methylation was associated with CDI expression score (coefficient -0.09, 95% CI (-0.17, -0.01)). We did not detect a significant relationship between SAM activity or oxidative status and child development. CONCLUSIONS: Our observations reveal associations between the physiological evidence of stress in the HPA axis with developmental status in early childhood. These findings add to the existing evidence exploring the developmental consequences of early life stress.


Assuntos
Desenvolvimento Infantil , Hidrocortisona , Criança , Humanos , Pré-Escolar , Feminino , Masculino , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Receptores de Glucocorticoides/metabolismo , Bangladesh , Sistema Hipófise-Suprarrenal/metabolismo , Biomarcadores/metabolismo , Saliva/metabolismo , Estresse Psicológico/metabolismo
8.
Psychoneuroendocrinology ; 164: 107006, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38432042

RESUMO

OBJECTIVES: Research has demonstrated that chronic stress experienced early in life can lead to impairments in memory and learning. These deficits are attributed to an imbalance in the interaction between glucocorticoids, the end product of the hypothalamic-pituitary-adrenal (HPA) axis, and glucocorticoid receptors in brain regions responsible for mediating memory, such as the hippocampus. This imbalance can result in detrimental conditions like neuroinflammation. The aim of this study was to assess the impact of sumatriptan, a selective agonist for 5-HT 1B/1D receptors, on fear learning capabilities in a chronic social isolation stress model in mice, with a particular focus on the role of the HPA axis. METHODS: Mice were assigned to two opposing conditions, including social condition (SC) and isolated condition (IC) for a duration of five weeks. All mice underwent passive avoidance test, with their subsequent freezing behavior serving as an indicator of fear retrieval. Mice in the IC group were administered either a vehicle, sumatriptan, GR-127935 (a selective antagonist for 5-HT 1B/1D receptors), or a combination of sumatriptan and GR-127935 during the testing sessions. At the end, all mice were sacrificed and samples of their serum and hippocampus were collected for further analysis. RESULTS: Isolation was found to significantly reduce freezing behavior (p<0.001). An increase in the freezing response among IC mice was observed following the administration of varying doses of sumatriptan, as indicated by a one-way ANOVA analysis (p<0.001). However, the mitigating effects of sumatriptan were reversed upon the administration of GR-127935. An ELISA assay conducted before and after the passive avoidance test revealed no significant change in serum corticosterone levels among SC mice. In contrast, a significant increase was observed among IC mice, suggesting hyper-responsiveness of the HPA axis in isolated animals. This hyper-responsiveness was ameliorated following the administration of sumatriptan. Furthermore, both the sumatriptan and SC groups exhibited a similar trend, showing a significant increase in the expression of hippocampal glucocorticoid receptors following the stress of the passive avoidance test. Lastly, the elevated production of inflammatory cytokines (TNF-α, IL-1ß) observed following social isolation was attenuated in the sumatriptan group. CONCLUSION: Sumatriptan improved fear learning probably through modulation of HPA axis and hippocampus neuroinflammation.


Assuntos
Sistema Hipotálamo-Hipofisário , Sumatriptana , Camundongos , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Sumatriptana/farmacologia , Sumatriptana/metabolismo , Receptores de Glucocorticoides/metabolismo , Serotonina/metabolismo , Doenças Neuroinflamatórias , Sistema Hipófise-Suprarrenal/metabolismo , Corticosterona , Estresse Psicológico/metabolismo , Isolamento Social , Medo
9.
Gen Comp Endocrinol ; 352: 114490, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460737

RESUMO

Stressful experiences in early life can alter phenotypic expression later in life. For instance, in vertebrates, early life nutrient restriction can modify later life activity of the hypothalamic-pituitary-adrenal/interrenal axis (the HPI in amphibians), including the up- and downstream regulatory components of glucocorticoid signaling. Early life nutrient restriction can also influence later life behavior and metabolism (e.g., fat accumulation). Yet, less is known about whether nutrient stress-induced carryover effects on HPA/HPI axis regulation can vary across environmental contexts, such as the type of diet on which nutrient restriction occurs. Here, we experimentally address this question using the plains spadefoot toad (Spea bombifrons), whose larvae develop in ephemeral habitats that impose intense competition over access to two qualitatively distinct diet types: detritus and live shrimp prey. Consistent with diet type-specific carryover effects of early life nutrient restriction on later life HPI axis regulation, we found that temporary nutrient restriction at the larval stage reduced juvenile (i.e., post-metamorphic) brain gene expression of an upstream glucocorticoid regulator (corticotropin-releasing hormone) and two downstream regulators (glucocorticoid and mineralocorticoid receptors) only on the shrimp diet. These patterns are consistent with known diet type-specific effects of larval nutrient restriction on juvenile corticosterone and behavior. Additionally, larval nutrient restriction increased juvenile body fat levels. Our study indicates that HPA/HPI axis regulatory responses to nutrient restriction can vary remarkably across diet types. Such diet type-specific regulation of the HPA/HPI axis might provide a basis for developmental or evolutionary decoupling of stress-induced carryover effects.


Assuntos
Hormônio Liberador da Corticotropina , Glucocorticoides , Animais , Glucocorticoides/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Corticosterona/metabolismo , Anuros/metabolismo , Nutrientes , Expressão Gênica , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
10.
Neuroimmunomodulation ; 31(1): 78-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527434

RESUMO

BACKGROUND: The brain and the immune systems represent the two primary adaptive systems within the body. Both are involved in a dynamic process of communication, vital for the preservation of mammalian homeostasis. This interplay involves two major pathways: the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. SUMMARY: The establishment of infection can affect immunoneuroendocrine interactions, with functional consequences for immune organs, particularly the thymus. Interestingly, the physiology of this primary organ is not only under the control of the central nervous system (CNS) but also exhibits autocrine/paracrine regulatory circuitries mediated by hormones and neuropeptides that can be altered in situations of infectious stress or chronic inflammation. In particular, Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), impacts upon immunoneuroendocrine circuits disrupting thymus physiology. Here, we discuss the most relevant findings reported in relation to brain-thymic connections during T. cruzi infection, as well as their possible implications for the immunopathology of human Chagas disease. KEY MESSAGES: During T. cruzi infection, the CNS influences thymus physiology through an intricate network involving hormones, neuropeptides, and pro-inflammatory cytokines. Despite some uncertainties in the mechanisms and the fact that the link between these abnormalities and chronic Chagasic cardiomyopathy is still unknown, it is evident that the precise control exerted by the brain over the thymus is markedly disrupted throughout the course of T. cruzi infection.


Assuntos
Encéfalo , Doença de Chagas , Timo , Humanos , Doença de Chagas/imunologia , Doença de Chagas/fisiopatologia , Animais , Encéfalo/imunologia , Timo/imunologia , Timo/fisiologia , Trypanosoma cruzi/fisiologia , Trypanosoma cruzi/imunologia , Sistema Hipotálamo-Hipofisário/imunologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Neuroimunomodulação/fisiologia , Neuroimunomodulação/imunologia , Sistema Hipófise-Suprarrenal/imunologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Sistema Hipófise-Suprarrenal/metabolismo
11.
J Pharmacol Sci ; 154(4): 236-245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485341

RESUMO

Postpartum depression (PPD) is a significant contributor to maternal morbidity and mortality. The Sigma-1 (σ-1) receptor has received increasing attention in recent years because of its ability to link different signaling systems and exert its function in the brain through chaperone actions, especially in neuropsychiatric disorders. YL-0919, a novel σ-1 receptor agonist developed by our institute, has shown antidepressive and anxiolytic effects in a variety of animal models, but effects on PPD have not been revealed. In the present study, excitatory/inhibitory signaling in the hippocampus was reflected by GABA and glutamate and their associated excitatory-inhibitory receptor proteins, the HPA axis hormones in the hippocampus were assessed by ELISA. Finally, immunofluorescence for markers of newborn neuron were undertaken in the dentate gyri, along with dendritic spine staining and dendritic arborization tracing. YL-0919 rapidly improves anxiety and depressive-like behavior in PPD-like mice within one week, along with normalizing the excitation/inhibition signaling as well as the HPA axis activity. YL-0919 rescued the decrease in hippocampal dendritic complexity and spine density induced by estrogen withdrawal. The study results suggest that YL-0919 elicits a therapeutic effect on PPD-like mice; therefore, the σ-1 receptor may be a novel promising target for PPD treatment in the future.


Assuntos
Ácido Glutâmico , 60610 , Feminino , Camundongos , Animais , Ácido Glutâmico/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Hipocampo/metabolismo , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Estrogênios , Plasticidade Neuronal , Ácido gama-Aminobutírico/metabolismo
12.
Basic Clin Pharmacol Toxicol ; 134(5): 563-573, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38459754

RESUMO

Dementia is an umbrella term for a broad group of age-associated neurodegenerative diseases. It is estimated that dementia affects 50 million people worldwide and that Alzheimer's disease (AD) is responsible for up to 75% of cases. Small extracellular senile plaques composed of filamentous aggregates of amyloid ß (Aß) protein tend to bind to neuronal receptors, affecting cholinergic, serotonergic, dopaminergic and noradrenergic neurotransmission, leading to neuroinflammation, among other pathophysiologic processes and subsequent neuronal death, followed by dementia. The amyloid cascade hypothesis points to a pathological process in the cleavage of the amyloid precursor protein (APP), resulting in pathological Aß. There is a close relationship between the pathologies that lead to dementia and depression. It is estimated that depression is prevalent in up to 90% of individuals diagnosed with Parkinson's disease, with varying severity, and in 20 to 30% of cases of Alzheimer's disease. The hypothalamic pituitary adrenal (HPA) axis is the great intermediary between the pathophysiological mechanisms in neurodegenerative diseases and depression. This review discusses the role of Aß protein in the pathophysiological mechanisms of dementia and depression, considering the HPA axis, neuroinflammation, oxidative stress, signalling pathways and neurotransmission.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Depressão , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Doenças Neuroinflamatórias , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia
13.
Sci Rep ; 14(1): 5898, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467724

RESUMO

Early-life adversity covers a range of physical, social and environmental stressors. Acute viral infections in early life are a major source of such adversity and have been associated with a broad spectrum of later-life effects outside the immune system or "off-target". These include an altered hypothalamus-pituitary-adrenal (HPA) axis and metabolic reactions. Here, we used a murine post-natal day 14 (PND 14) Influenza A (H1N1) infection model and applied a semi-holistic approach including phenotypic measurements, gene expression arrays and diffusion neuroimaging techniques to investigate HPA axis dysregulation, energy metabolism and brain connectivity. By PND 56 the H1N1 infection had been resolved, and there was no residual gene expression signature of immune cell infiltration into the liver, adrenal gland or brain tissues examined nor of immune-related signalling. A resolved early-life H1N1 infection had sex-specific effects. We observed retarded growth of males and altered pre-stress (baseline) blood glucose and corticosterone levels at PND42 after the infection was resolved. Cerebral MRI scans identified reduced connectivity in the cortex, midbrain and cerebellum that were accompanied by tissue-specific gene expression signatures. Gene set enrichment analysis confirmed that these were tissue-specific changes with few common pathways. Early-life infection independently affected each of the systems and this was independent of HPA axis or immune perturbations.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Feminino , Masculino , Animais , Camundongos , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/genética , Influenza Humana/metabolismo , Transcriptoma , Estresse Psicológico/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Corticosterona
14.
Clin Exp Pharmacol Physiol ; 51(3): e13837, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38302081

RESUMO

Although it is well established that fibromyalgia (FM) syndrome is characterized by chronic diffuse musculoskeletal hyperalgesia, very little is known about the effect of this pathology on muscle tissue plasticity. Therefore, the present study aimed to characterize the putative alterations in skeletal muscle mass in female rats subjected to a FM model by inducing chronic diffuse hyperalgesia (CDH) through double injections of acidic saline (pH 4.0) into the left gastrocnemius muscle at 5-day intervals. To determine protein turnover, the total proteolysis, proteolytic system activities and protein synthesis were evaluated in oxidative soleus muscles of pH 7.2 (control) and pH 4.0 groups at 7 days after CDH induction. All animals underwent behavioural analyses of mechanical hyperalgesia, strength and motor performance. Our results demonstrated that, in addition to hyperalgesia, rats injected with acidic saline exhibited skeletal muscle loss, as evidenced by a decrease in the soleus fibre cross-sectional area. This muscle loss was associated with increased proteasomal proteolysis and expression of the atrophy-related gene (muscle RING-finger protein-1), as well as reduced protein synthesis and decreased protein kinase B/S6 pathway activity. Although the plasma corticosterone concentration did not differ between the control and pH 4.0 groups, the removal of the adrenal glands attenuated hyperalgesia, but it did not prevent the increase in muscle protein loss in acidic saline-injected animals. The data suggests that the stress-related hypothalamic-pituitary-adrenal axis is involved in the development of hyperalgesia, but is not responsible for muscle atrophy observed in the FM model induced by intramuscular administration of acidic saline. Although the mechanisms involved in the attenuation of hyperalgesia in rats injected with acidic saline and subjected to adrenalectomy still need to be elucidated, the results found in this study suggest that glucocorticoids may not represent an effective therapeutic approach to alleviate FM symptoms.


Assuntos
Fibromialgia , Hiperalgesia , Ratos , Feminino , Animais , Hiperalgesia/tratamento farmacológico , Fibromialgia/complicações , Fibromialgia/tratamento farmacológico , Fibromialgia/patologia , Adrenalectomia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Solução Salina/farmacologia
15.
Zhongguo Zhong Yao Za Zhi ; 49(1): 208-215, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403353

RESUMO

This study aimed to investigate the regulatory effects of Zuogui Jiangtang Jieyu Formula(ZJJ) on the intestinal flora, short chain fatty acids(SCFAs), and neuroinflammation in rats with diabetes mellitus complicated depression(DD). The DD model was established in rats and model rats were randomly divided into a model group, a positive drug(metformin + fluoxetine) group, a ZJJ low-dose group, and a ZJJ high-dose group, with eight rats in each group. Another eight rats were assigned to the blank group. Subsequently, depressive-like behavior test was conducted on the rats, and cerebrospinal fluid samples were collected to measure pro-inflammatory cytokines [interleukin-1ß(IL-1ß), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α)]. Blood serum samples were collected to measure proteins related to the hypothalamic-pituitary-adrenal axis(HPA axis), including corticotropin-releasing hormone(CRH), adrenocorticotropic hormone(ACTH), and cortisol(CORT), as well as glucose metabolism. Gut contents were collected from each group for 16S rRNA sequencing analysis of intestinal flora and SCFAs sequencing. The results indicated that ZJJ not only improved glucose metabolism in DD rats(P<0.01) but also alleviated depressive-like behavior(P<0.05) and HPA axis hyperactivity(P<0.05 or P<0.01). Besides, it also improved the neuroinflammatory response in the brain, as evidenced by a significant reduction in pro-inflammatory cytokines in cerebrospinal fluid(P<0.05 or P<0.01). Additionally, ZJJ improved the intestinal flora, causing the intestinal flora in DD rats to resemble that of the blank group, characterized by an increased Firmicutes abundance. ZJJ significantly increased the levels of SCFAs(acetic acid, butyric acid, valeric acid, and isovaleric acid)(P<0.01). Therefore, it is deduced that ZJJ can effectively ameliorate intestinal flora dysbiosis, regulate SCFAs, and thereby improve both glucose metabolism disturbances and depressive-like behavior in DD.


Assuntos
Diabetes Mellitus , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Ratos , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Depressão/tratamento farmacológico , RNA Ribossômico 16S , Sistema Hipófise-Suprarrenal/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Citocinas/genética , Citocinas/metabolismo , Glucose/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia
16.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397124

RESUMO

Depression is twice as prevalent in women as in men, however, most preclinical studies of depression have used male rodent models. This study aimed to examine how stress affects metabolic profiles depending on sex using a rodent depression model: sub-chronic variable stress (SCVS). The SCVS model of male and female mice was established in discovery and validation sets. The stress-induced behavioral phenotypic changes were similar in both sexes, however, the metabolic profiles of female plasma and brain became substantially different after stress, whereas those of males did not. Four stress-differential plasma metabolites-ß-hydroxybutyric acid (BHB), L-serine, glycerol, and myo-inositol-could yield biomarker panels with excellent performance to discern the stressed individuals only for females. Disturbances in BHB, glucose, 1,5-anhydrosorbitol, lactic acid, and several fatty acids in the plasma of stressed females implied a systemic metabolic shift to ß-oxidation in females. The plasma levels of BHB and corticosterone only in stressed females were observed not only in SCVS but also in an acute stress model. These results collectively suggest a sex difference in the metabolic responses by stress, possibly involving the energy metabolism shift to ß-oxidation and the HPA axis dysregulation in females.


Assuntos
Sistema Hipotálamo-Hipofisário , Caracteres Sexuais , Humanos , Masculino , Feminino , Camundongos , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Metabolômica , Encéfalo/metabolismo , Corticosterona , Estresse Psicológico/metabolismo
17.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338761

RESUMO

Childhood maltreatment is an important risk factor for adult depression and has been associated with changes in the hypothalamic pituitary adrenal (HPA) axis, including cortisol secretion and methylation of the FKBP5 gene. Furthermore, associations between depression and HPA changes have been reported. This study investigated the associations of whole-blood FKBP5 mRNA levels, serum cortisol levels, childhood maltreatment, and depressive symptoms with the whole-blood methylation status (assessed via target bisulfite sequencing) of 105 CpGs at the FKBP5 locus using data from the general population-based Study of Health in Pomerania (SHIP) (N = 203). Both direct and interaction effects with the rs1360780 single-nucleotide polymorphism were investigated. Nominally significant associations of main effects on methylation of a single CpG site were observed at intron 3, intron 7, and the 3'-end of the gene. Additionally, methylation at two clusters at the 3'-end and intron 7 were nominally associated with childhood maltreatment × rs1360780 and depressive symptoms × rs1360780, respectively. The results add to the understanding of molecular mechanisms underlying the emergence of depression and could aid the development of personalised depression therapy and drug development.


Assuntos
Maus-Tratos Infantis , Metilação de DNA , Transtorno Depressivo , Proteínas de Ligação a Tacrolimo , Adulto , Criança , Humanos , Transtorno Depressivo/genética , Hidrocortisona , Sistema Hipotálamo-Hipofisário/metabolismo , Íntrons/genética , Sistema Hipófise-Suprarrenal/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas de Ligação a Tacrolimo/genética
18.
J Affect Disord ; 351: 870-877, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341156

RESUMO

The hypothalamus is a well-established core structure in the sleep-wake cycle. While previous studies have not consistently found whole hypothalamus volume changes in chronic insomnia disorder (CID), differences may exist at the smaller substructural level of the hypothalamic nuclei. The study aimed to investigate the differences in total and subfield hypothalamic volumes, between CID patients and healthy controls (HCs) in vivo, through an advanced deep learning-based automated segmentation tool. A total of 150 patients with CID and 155 demographically matched HCs underwent T1-weighted structural magnetic resonance scanning. We utilized FreeSurfer v7.2 for automated segmentation of the hypothalamus and its five nuclei. Additionally, correlation and causal mediation analyses were performed to investigate the association between hypothalamic volume changes, insomnia symptom severity, and hypothalamus-pituitary-adrenal (HPA) axis-related blood biomarkers. CID patients exhibited larger volumes in the right anterior inferior, left anterior superior, and left posterior subunits of the hypothalamus compared to HCs. Moreover, we observed a positive association between blood corticotropin-releasing hormone (CRH) levels and insomnia severity, with anterior inferior hypothalamus (a-iHyp) hypertrophy mediating this relationship. In conclusion, we found significant volume increases in several hypothalamic subfield regions in CID patients, highlighting the central role of the HPA axis in the pathophysiology of insomnia.


Assuntos
Hormônio Liberador da Corticotropina , Distúrbios do Início e da Manutenção do Sono , Humanos , Hormônio Liberador da Corticotropina/metabolismo , Distúrbios do Início e da Manutenção do Sono/diagnóstico por imagem , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Hipotálamo/diagnóstico por imagem
19.
Front Immunol ; 15: 1330094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361932

RESUMO

Microbiota plays a role in shaping the HPA-axis response to psychological stressors. To examine the role of microbiota in response to acute immune stressor, we stimulated the adaptive immune system by anti-CD3 antibody injection and investigated the expression of adrenal steroidogenic enzymes and profiling of plasma corticosteroids and their metabolites in specific pathogen-free (SPF) and germ-free (GF) mice. Using UHPLC-MS/MS, we showed that 4 hours after immune challenge the plasma levels of pregnenolone, progesterone, 11-deoxycorticosterone, corticosterone (CORT), 11-dehydroCORT and their 3α/ß-, 5α-, and 20α-reduced metabolites were increased in SPF mice, but in their GF counterparts, only CORT was increased. Neither immune stress nor microbiota changed the mRNA and protein levels of enzymes of adrenal steroidogenesis. In contrast, immune stress resulted in downregulated expression of steroidogenic genes (Star, Cyp11a1, Hsd3b1, Hsd3b6) and upregulated expression of genes of the 3α-hydroxysteroid oxidoreductase pathway (Akr1c21, Dhrs9) in the testes of SPF mice. In the liver, immune stress downregulated the expression of genes encoding enzymes with 3ß-hydroxysteroid dehydrogenase (HSD) (Hsd3b2, Hsd3b3, Hsd3b4, Hsd3b5), 3α-HSD (Akr1c14), 20α-HSD (Akr1c6, Hsd17b1, Hsd17b2) and 5α-reductase (Srd5a1) activities, except for Dhrs9, which was upregulated. In the colon, microbiota downregulated Cyp11a1 and modulated the response of Hsd11b1 and Hsd11b2 expression to immune stress. These data underline the role of microbiota in shaping the response to immune stressor. Microbiota modulates the stress-induced increase in C21 steroids, including those that are neuroactive that could play a role in alteration of HPA axis response to stress in GF animals.


Assuntos
Sistema Hipotálamo-Hipofisário , Microbiota , Masculino , Camundongos , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Espectrometria de Massas em Tandem , Sistema Hipófise-Suprarrenal/metabolismo , Esteroides/metabolismo , Corticosterona/metabolismo
20.
J Hazard Mater ; 466: 133570, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309172

RESUMO

Mice exposed to diesel exhaust particulate matter (DEPM) exhibited accelerated weight gain. Several hypothalamic genes, hormones (serum Hypothalamic-Pituitary-Adrenal (HPA) axis hormones and gastrointestinal peptide tyrosine tyrosine (PYY)), metabolites (intrahepatic triglyceride (IHTG) and fecal short-chain fatty acids (SCFAs)), and gut microbiota structure, which may influence obesity and appetite regulation, were examined. The result suggested that DEPM-induced accelerated weight gain may be associated with increased expression of hypothalamic Gamma-aminobutyric acid (GABA) type B receptor, tight junction protein, and orexin receptors, in addition with decreased IHTG and repressed HPA axis. Moreover, changes in the structure of intestinal microbiota are also related to weight changes, especially for phylum Firmicutes, genus Lactobacillus, and the ratio of relative abundance of Firmicutes and Bacteroidetes (F/B). DEPM exposure also caused widespread increase in the levels of intestinal SCFAs, the concentrations of propionic acid and isobutyric acid were associated with weight gain rate and the abundance of some bacteria. Although DEPM exposure caused changes in expression of hypothalamic serotonin, NPY, and melanocortin receptors, they were not associated with weight changes. Furthermore, no significant difference in gastrointestinal PYY and expression of hypothalamic receptors for leptin, insulin, and glucagon-like peptide 1 receptors was observed between DEPM-exposed and control mice.


Assuntos
Microbioma Gastrointestinal , Emissões de Veículos , Camundongos , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Apetite , Sistema Hipófise-Suprarrenal/metabolismo , Aumento de Peso , Ácidos Graxos Voláteis/metabolismo , Insulina , Firmicutes/metabolismo , Material Particulado/toxicidade , Tirosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...